
296 

Acta Cryst. (1979). A35, 296-305 

A Probabilistie Theory of Two-Phase Seminvariants of First Rank via the Method of 
Representations. III 

BY CARMELO GIACOVAZZO 

Istituto di Mineralogia, Palazzo Ateneo, Universit~t, 70121 Bari, ltaly 

(Received 3 May 1978; accepted 13 September 1978) 

Abstract 

The estimation of two-phase seminvariants of first rank 
is carried out for all space groups. Representations 
theory [Giacovazzo (1977). Acta Cryst. A33, 933- 
944] is suitably combined with the joint probability dis- 
tribution method. Formulae are obtained which exploit 
the knowledge of the diffraction magnitudes belonging 
to the first phasing shell of two-phase seminvariants 
both via the exponential form the characteristic 
function and via its Gram-Charlier  expansion. 

1. Introduction 

In two recent papers [Giacovazzo, 1977a,b; hereafter 
(I) and (II) respectively] a probabilistic theory of 
coincidence relationships has been described which 
holds for all the space groups and improves on the 
results of Grant, Howells & Rogers (1957) and 
Debaerdemaeker & Woolfson (1972) and also on 
Hauptman's (1972) algebraic approach. In these 
papers the symmetry number of a given space group 
was denoted by m, and C s - (R s, Ts). (s = 1 , . . . ,  m) 
denoted the m symmetry operators. R s repre- 
sents the sth rotation matrix and T s the corresponding 
matrix of translation. The theory derives the expected 
value of the seminvariant cosine C O S ( ~ 0 h ~ + h  2 - -  

qThlRp + h 2 R )  given [Eh~ + h21, IEh,Rp + h2R[  and one or more 
pairs of magnitudes (IEh, + kl, IEh~_ kl), where k(Rp -- 
Rq) = 0. In particular, the theory is capable of giving in 
centrosymmetric symmorphic space groups sign 
relationships of the type 

S(h  + S(h  + : - 1 ,  

which are of great interest in direct procedures for 
phase determination. In noncentrosymmetric space 
groups it was shown that the most probable value of 
COS ((ffh, + h 2 - -  ~0h, Rp + h 2 R) may lie anywhere between - 1 
and 1. In P i  the results were equivalent to those 
described by Giacovazzo (1974) and more recently by 
Green & Hauptman (1976). 

The method of representations (Giacovazzo, 1977c) 
has given the author new insights into probabilistic 
methods for obtaining accurate estimates of the phase 
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invariants or seminvariants. This theory is able, for any 
universal structure invariant or structure seminvariant 
• , to arrange in a general way the set of reflexions in a 
sequence of rested subsets, whose order is that of the 
expected effectiveness (in the statistical sense) for the 
estimation of ~. For each subset {B} n, which is called a 
phasing shell of nth order for q~, one is able to estimate 
a collection of structure invariants [denoted in 
Giacovazzo (1977c) as {~,}n] whose values may differ 
from q~ by constants which arise because of the trans- 
lational symmetry. The first aim of this paper is to 
estimate for any space group two-phase seminvariants 
of first rank by means of their first representation. We 
recall that q~ -- q~u + ~0, is a structure seminvariant of 
first rank if a vector h and two symmetry operators C i 
and C s exist such that 

~b¢ 1 = ~[~f q- ( f f h R i -  ~OhR j 

= (PaRs -I" (ffvR,, -I- ( f f h R i -  ~ h R j  (1) 

is a universal structure invariant (R h may or may not 
be experimentally measured). As 

~0hg = qTh- 2nhT, (2) 

q/l differs from q~ by a constant which arises because of 
the translational symmetry: 

g/l - ~ = -2n(uTs  + vTn + h T / -  hTi). 

Therefore, if ~'1 is estimated, q' is consequently 
estimated. The collection of quartets qJl is the first rep- 
resentation of qJ; its first phasing shell contains the 
basis and cross-magnitudes of quartets ~1- As an 
example, q~ = q~u + ~0v is a structure seminvariant of first 
rank for the point group 222 if uR s + vR~ -- 0 mod 
(0,2,2), (2,0,2) or (2,2,0), whereas q~ is a structure 
seminvariant of second rank when uR s + vR~ -- 0 mod 
(2,2,2). The application of the method of rep- 
resentations to the two-phase structure seminvariants 
of first rank is able to give better estimates (in the 
statistical sense) than those provided by the coinci- 
dence methQd. For example, in P1 the coincidence 
method evaluates q~ = ~0h~ + h2 "+" ~0hl _ h2 in terms of the 
four magnitudes (hereafter Rh = IEhl): Rh, + u2, Rh,--h~, 
© 1979 International Union of Crystallography 
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.Rh, , Rh: The representation method involves, via the 
two quartets 

~fl  = (ffh, + h 2 -t- ( f f h , -  h 2 - -  (ffh, - -  (ffh,. 

~/./~ = ~/Thl + h 2 - -  ~/Tht- h 2 - -  ~ h  2 - -  ~Oh2 , 

the six magnitudes Rh,+h: Rh,--h: Rhl, Rh: R2h,, R2h: 
The sign probability of a two-phase seminvariant in P1 
given six magnitudes has recently been calculated by 
Giacovazzo (1978). The estimation of two-phase 
seminvariants will be carried out by means of the 
mathematical device of joint probability distribution 
functions. We shall assume that the reciprocal vectors 
are fixed and that the atomic coordinates are the 
primitive random variables. Two different math- 
ematical methods will be used. The first involves a 
Gram-Charlier expansion of the characteristic function 
in terms of standardized cumulants. The second uses 
the same cumulants, but directly in the exponential 
expression of the characteristic function. Both methods 
require the ability to compute non-vanishing cumulants 
for every space group. Space-group algebra, by which 
this analysis may be performed, has already been 
described in (I) and (II). In particular, we emphasized 
there [see Appendix B of (I)] that mixed cumulants of 
the type 20..2o.2o.. do not always vanish for space 
groups with symmetry higher than Pi .  For the sake 
of simplicity we neglect the weak effects of this type of 
cumulant on the distributions studied in this paper. 
Furthermore, we do not apply here the concept of 
'generalized first phasing shell' which has recently been 
formulated (Giacovazzo, 1979a). We defer to a later 
paper (Giacovazzo, 1979b) the application of this 
concept to the probabilistic theory of the two-phase 
seminvariants of first rank. 

Proposition 1. # = ~ / ~ h R p -  (ffhR is a structure semin- 
variant for each space group qwhich presents the 
rotation matrices R v and Rq. 

Proof. Since 

(~hR = ( P h -  2xhT, (4) 
then 

= 2xh(Tq-  Tu), 

which depends only on the fixed functional form of the 
structure factor. 

This proposition helps to prove proposition 2. 
Proposition 2. ~0h(R- Rq) is a structure seminvariant 

for each space group which presents the rotation 
matrices Rp and Rq. 

Proof Since 

( P h ( R p -  Rq) -'F" (PhR,~-- (PhRp 

is a universal structure invariant, its value is a constant 
whatever the origin. From proposition 1, tPhR~- tPhR~ is a 
constant when the origin varies within an equivalence 
class. Consequently, ~0h(R~- a~) enjoys the same 
property. 

Proposition 3. Let ~0. and tpv be a pair of phases for 
which 

U = h I - -  h 2 (5a) 

V = - - h  1 R p  + h E R q .  (5b) 
Then ~Pu + ~Pv is a structure seminvariant of first rank. 

Proof. Let (5a) be multiplied by Rp and add it to 
(5b); this gives 

uRp + v = h 2 ( R q -  Rp). (6) 

From proposition 2, qT..a~ + ~pv is a structure semin- 
variant. Furthermore, it is of first rank because 

2. Some algebraic properties of  the two-phase semin- 
variants o f  first rank 

In (I) and (II) we took the system 

(~h, - -  (~h 2 ' ~  (~h I - h 2 = (~u, 

( ~ - h , R .  "t- (ffh2Rq "~ (p__h,R,,+ h2g~ '~ '  ~ v '  (3) 

as a starting point for studying the two-phase structure 
seminvariants of first rank by the coincidence method. 
It was suggested that the algebraic properties of system 
(3) should be exploited in order to derive the nature of 
the vectors h~ and h 2 which contribute to the estimation 
of (Pu + ~v. The results should be very useful from both 
theoretical (they suggest suitable probability dis- 
tribution functions which exploit the space-group 
symmetry) and practical points of view (they allow us 
to introduce a fast automatic procedure for the 
estimation of two-phase seminvariants). We intend to 
state these properties more rigorously than in (I) and 
(II). 

~/~uR a -!- ~/~v - -  ~/~h 2 Rq -]- ~/~h 2 R v 

is a universal structure seminvariant of the same kind 
as those defined by (1). 

Proposition 4. If ~0u + ~0v is a structure seminvariant 
of first rank, there are at least two vectors h 1 and h E and 
two rotation matrices Rp and Rq for which (5) holds. 

Proof Because of the hypothesis, (1) holds. 
Therefore, 

uR s + vR n + h ( R i - -  R j)  = 0. (7) 

Without any loss of generality we can denote 

uR s = ( H I -  h)R/, (8) 

where H~ is a suitable vector. (7) then reduces to 

vR n = hRj  -- H 1 R i. (9) 
If we denote 

h I = H  IR iRs 1, h 2 = h R t R s  1, 

(8) then reduces to (5a). Next, denoting by C the 
symmetry operator for which Rj = R i R ,  (9) may be 
written as 
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V : h R i  R~ R ~  1 - -  H 1 R i R ~  1 

---- h 2 R s R,  R n  1 --  h I R s R~ 1, 

which reduces to (5b) if Rp ---- RsRn 1, and Rq = 
R s R~ R n  1. 

Propositions 3 and 4 warrant that the probabilistic 
theory we describe holds for all two-phase semin- 
variants of first rank. 

We now develop the conditions necessary and 
sufficient for the existence of system (5): for these the 
general expression of the solution (h~,h2) is given. By 
combining (5a) with (5b) we have 

h 2 ( R  q --  Rp)---- v + uRp .  (10) 

For fixed u, v, Rp and Rq, (10) may be considered a 
system of linear equations whose unknown is h E . If the 
solution of (10) is found, since h 1 is fixed by (5a) the 
solution of system (5) is also found. Since Rq -- Rp is 
generally singular, in order to solve (10) the concept of 
a reflexive generalized inverse matrix has to be intro- 
duced. 

Definition. If A is an m x n matrix, an n x m matrix 
A* is said to be a reflexive generalized inverse of A 
provided " 

A A * A = A  and A * A A * = A * .  

Property. A system of linear equations 

A x - - b  (11) 

has a solution if and only if AA*b = b. Furthermore, if 
it has a solution then 

x = A*b + ( I -  A*A)z, (12) 

where z is an arbitrary vector. 
However, in (10), A = (Rq -- Rp) + (the superscript 

indicates the transpose of the matrix) and b = v + uRp 
are the integral matrix and vector respectively; further- 
more, we are only interested in integral solutions. We 
can then use Hurt 's  & Waid's (1970) theorem for 
diophantine systems; according to this, if A and b are 
integral, (11) has an integral solution if and only if 

A*b ---- 0 (mod 1). (13) 

In this case the general integral solution of (11) is given 
by (12), where z is an arbitrary integral vector. 

It is clear that from (10) and propositions 3 and 4 a 
new property of the two-phase seminvariants of first 
rank follows. 

Property. ~o., + (o~ is a structure seminvariant of first 
rank if (7) holds for at least one vector h E and a pair of 
matrices (Rp,Rq). 

Let us now describe the consequences of the above 
theorems. For fixed u and v let (Rv, Rq) be a pair of 
matrices which make (10) consistent and let {h2} 
denote the set of reciprocal vectors which satisfy (10). 
Accordingly {h~ } denotes the collection of vectors h I = 

U + h 2 which arise when h 2 varies within {h 2 }. The sets 
of quartet invariants 

E v , EuR p , Eh2 Rp, E_h2 Rq, (14a) 

and 

Ev, Eusq, E+h~ Rp, E-h~ Rq (14b) 

may then be constructed; these depend on the cross- 
magnitudes 

IEh2(Rq-- Rp) I, IEv+h2R I, IEh, Rpl, (15a) 

and 

IEh~(Rq- Rp)l, [Eh2R I, IE.Rq + hlRpl (15b) 

respectively. It is easy to see that one cross-vector of 
the quartets (14a) always coincides with a basis vector 
of the quartets (14b) and vice versa (i.e. h~ Rp and h 2 Rq 
respectively). This observation suggests that the value 
of the seminvariant ~0, + ~Pv may be estimated by means 
of the joint probability distribution 

P[Eh,, Eh2, E h , -  h2, E-h ,  a~ + h2R q, Eh,(Rp- Rq), Eh~(Rp- Rq), 

E_hl Rp + h2Rq_ hlRq, E_ht R~ + h2Rq + h2Rp] (16) 

more accurately (in the statistical sense) than by means 
of the two separate seven-variates distributions 

P[Eh,, Eh2, E h , -  h 2, E-h ,  Rp + h2Rq, Eh~(R,- Rq), 

E -h ,  g, + h2 Ro - h, Rq], 

P[Eh,, Eh 2, Eh~ - h~, E -h ,  Rp + h 2 Sq, Eh2(S p- Rq), 

E - h  I Rp + h2R q + h2Rp]. 

This last approach, in fact treats the two quartets (14a) 
and (14b) as though they were statistically independent 
of one another; this is not strictly true. A study of dis- 
tribution (16) is now made. 

The following propositions can be very useful in 
automatic procedures because from a single element of 
{h 2 } or {h i } the generalized solution of system (5 ) i s  
derivable. 

Proposition 5. If (hi,h2) is a solution of system (5), 
(h I + k, h 2 + k) is also, provided k(Rp -- Rq) = 0. 

Proof. This is trivial: one only needs to replace 
(hi, h2) in (5) by (h I + k, h 2 + k). 

Proposition 6 will prove very useful in paper IV 
(Giacovazzo, Spagna, Vickovi6 & Viterbo, 1979) 
where an algorithm has been formulated for deriving, 
for space groups up to the orthorhombic system, the 
conditional joint probability density of tp u + tpv, given all 
the magnitudes in (14) and (15). 

Proposition 6. If the matrices Rp and Rq represent 
symmetry operators of order two, then - (v + h 2 Rv)R n 
and --(uRq + h I Rp)Rq belong to the sets {h 1 } and {h 2} 
respectively. 

Proof. Because of propostion 5, proposition 6 holds 
if the difference between the elements - ( v  + h 2 Rp)R;  
and any h I and the difference between --(uRq + 
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hi Rp)Rq and any h 2 are vectors k for which k(Rp -- Rq) 
= 0. This is so because 

[ - - (v  + h 2 Rp) R p -  h,] 
X ( R p -  Rq) = - - h 2 ( l  + R o R p ) ( R  p --  Rq) = 0, 

[ - - ( u R q  + h t Rp)Rq --  h 2] 

x (Rp -- Rq) -- --h~ (I + Rp Rq)(Rp -- Rq) = 0. 

Corollary (a). If Rp = --Rq, v + h2R p is symmetry 
equivalent to h t and uR a + h t R, to h 2. 

In P1, this property suggests the study of the six- 
variates distribution 

P(Eh, ,  Eh,+h2, Ebb--h2, E2h~, e2h2), 

which has recently been described (Giacovazzo, 
1978). 

Corollary (b). If  Rp and Rq correspond to symmetry 
operators of order two and h~ and h 2 are elements of 
{hi} and {h2} , respectively, then - - h l R p R  q and 
--h 2 Rp Rq also belong to {h~} and {h 2 } respectively. 

Proof. As for proposition 6. 
Propogition 7. Let (pu + (Pv be a structure semin- 

variant of first rank for which equations (5) hold. If 
(Ph(Rp + l) and (Ph(R~ + I) are structure seminvariants what- 
ever h may be, then ~Pu - ~Pv is also a structure semin- 
variant. 

Proof. From equations (5) we obtain 

u -  v = h 1 (Rp + I) - -  h 2 (Rq + I). 

Because of the hypothesis, hl(Rp + I) ------- 0 (mod ms) 
and h2(R q + I) -- 0 (mod COs). Consequently u - v =- 0 
(mod %). 

Proposition 7 is trivial in centrosymmetric space 
groups because (0 u + ¢Pv = ~Pu- (o,. However, in non- 
eentrosymmetric space groups it can enable one to 
obtain, in favourable circumstances, additional infor- 
mation about phase values. From our point of view the 
more favourable circumstances occur when both ~Pu + 
(o v and ~p., - (o v are structure seminvariants of first rank. 
This occurs, for example, in space groups belonging to 
symmetry class 222. For  these, let 

i 0 0 

R l = l ,  R 2 =  0 i 0 ; 

0 0 1 

R 3 = 

i 0 

0 1 

0 0 

0 

0 ;  

i 

and 

R 4 

1 0 0 

0 i 0 

0 0 i 

be the rotation matrices and (Giacovazzo, 1977c, 
Appendix) 

u + v = 0 mod (2,2,0) or (2,0,2) or (0,2,2) (17) 

be the condition which is satisfied if ~0.. + ~0v is a semin- 
variant of first rank. If a given pair ~Pu + tpv satisfies 
(17), then since 

h(R 2 + I ) - -  (0,0,2l), h(R 3 + I ) =  (0,2k,0), 

and h(R 4 + I ) =  (2k,0,0), 

~0. -- ~Pv also satisfies (17). 
For a given two-phase seminvariant of first rank, ~ou 

+ ~ more pairs (Rp,Rq) can exist, each giving rise to 
integral solutions (hi,h2) of system (5). Some of these 
solutions, however, may be equivalent in the crystallo- 
graphic sense. Therefore, those properties may be 
useful which are able to reduce the number of solutions 
to non-equivalent ones. 

Proposition 8. Let (hi,h2) be the generalized solution 
of system (5). If system 

h~ -- hl  = u, (18a)  

--h~ R o + h~ Rp = v (18b) 

has the generalized solution (h~,h~), then this is 
• crystallographically equivalent to (hl, h2). 

Proof. Combining (18a) with (18b) one obtains 

h ~ ( R p -  Rq) --  v + uRq,  

which in turn may be combined with (10) to give 

(h~ + h2)(Rp-- gq) = u ( R q - -  Rp). (19)  

Because of (5a), (19) may be written as h~(Rp -- Rq) = 
--hl(Rp -- Rq), which, because of proposition 5, gives 
h i = --h~ + k provided k(Rp -- Rq) = 0. Next, from 
(5a) and (18a) h~ = --h2 + k. 

Proposition 9. Let (ht, h2)be the generalized solution 
of system (5). Then the system 

hi - h~ = uRv, (20a)  

--h~ R,~ + h'~ R~ = vR~ (20b) 

has the generalized solution (h i, h~), which is crystallo- 
graphically equivalent to (h~, h2) provided R,~ = 
R~ "l Rp R o, R/3 = R~ -1 Rq R, .  

Proof. Because of the hypothesis, (20b) becomes 
--h~ R~ -1 Rp + h i R~ -1 Rq = v. By denoting h~ = h~ R~ -1, 
and h~ = hl R~ -I, (20) reduces to (5). 

In addition to the preceding properties we note that 
because of proposition (8), proposition (9) also holds if 
the roles of R~ and R~ are exchanged. -Solutions 
crystallographically equi'~alent to (h~,h2) are also 
found if ( - -u , - -v)  replaces (u,v)in (5), (18)and  (20). 
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3. The estimation of two-phase seminvariants of first 
rank in eentrosymmetrlc space groups when the Gram- 
Charlier expansion of the characteristic function is used 

The joint probability distribution (16) was first studied 
v ia  the Gram-Charlier expansion of its characteristic 
function. Denoting 

E, : E h , ;  E 2 =- Eh2; E 3 = E h  _h2; E 4 -= E _ h ,  Ro+h2Rq; 

E5 = E h , ( R p -  Rq); E 6  = Eh2(g p -  Rq); 

E 7  = E - h ,  R D + h 2 R o - h I R~; 

and E s = E _ h ,  Rp + h 2 Rq + h 2 R o, 

we obtain 

P+ ~_ O- 5 + O. 5 tanh 
2 N  I + C / 2 N  Ap, q , 

(21) 

where P+ is the probability that the sign of Eh_h2 
E-h, R, + h2 Rq is positive, 

a 

a l =  

a 2 = 

C =  

+ 

+ 

a 1 + a 2, 

81 + 8 2 + 87 + 8 8, 

81 85 + 82 86 q'- 28~ e z + 28, e 7 + 282 88, 

¼H4(E,)e5 + ¼H,(E2)86 

83 84(85 + 86), 

H 4 ( E i )  = E~  - 6 E  2 + 3, 

e i = E 2 --  1, 

and 

Ap, q = ( -  1) 2 (h ,x , -  h2Tq). 

(21) does not take into account the statistical nature of 
the reflexions. A general way for making it do so is 
described in Appendix A.* Marginal probability den- 
sities of (21) can provide suitable formulae which 
estimate the sign of a two-phase seminvariant in cases 
for which not all the magnitudes of the reflexions in 
(16) are measured. The corresponding probability 
values can be derived from (21) by equating to zero the 
terms 8 i corresponding to the magnitudes I E i l  which 
are not in the set of measurements. For example, if 

* Appendices A and B have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
33916 (7 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH 1 2HU, England. 

IE51, IE61, IETI and IEsl are not measured, (21) 
reduces to equation (II. 13) calculated for ), = 1. 

In P i ,  Rp = I and Rq = --I or v ice  versa .  (16) then 
reduces to P(Eh , ,  Eh2, Eh,- h2, Eh, + h2, E2n,, E2h2) which 
has been studied by Giacovazzo (1978). 

In the conditions for which proposition 6 holds (for 
example, for all the space groups up to the ortho- 
rhombic system) a number of new non-vanishing 
cumulants (see Appendix A) arise. In these cases (21) 
still holds but A' and C' replace A and C respectively: 

A' = A  + 858 s + 8687; 

C ' =  C + ¼H4(Es)e 5 + ¼H4(E7)86. 

Again, algebraic considerations described in §2 sug- 
gest, for a given tp. + tpv, that h, and h 2 are, in general, 
free vectors under certain conditions [i.e. they must 
satisfy system (5)]. Furthermore, in favourable con- 
ditions more (R w Rq) pairs can exist which give rise to 
generalized solutions (h 1, h2) of system (5), which are 
crystallographically non-equivalent to one another. 
This suggests the following generalized formula: 

IE3E41 S ~, zl- A } 
P+ ~_ 0.5 + 0.5 tanh z..j,p,q.Xj, p,q~Jj,p,q 

2 N  1 + ~..),p,q Cj ' .p .q /EN ' 

(22) 

where (a) the primes on the summation symbols warn 
that precautions have to be taken in order to avoid 
duplicates in the contributions; (b) j is an index 
associated with the j th  pair (hi, h2); (c) A~ and C)'are 
suitable terms which take account of the space-group 
symmetry (in the sense that a choice must be made 
between factors A , C  or A ' , C ' )  and incidental non- 
measured reflexions. 

Equation (21) [and (22) of course] may easily be 
generalized to cover structures with unequal atoms: i.e. 
(21) becomes 

{ ,83E4, 
P+ ~_ 0.5 + 0.5 tanh 2 

[ A ] }  
x 1 + ( a ] / 2 c r ~ ) C ' "  zlp, o , 

(23) 

where 

0- 4 02  N 
A ' " = - - a  + - - a  2, C ' " = C ,  a , =  ~ Z~, 

0 2 1  0"3 j = l  

and Z j  is the atomic number of atomj.  
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4. The estimation of ~h, + h 2 "~" ~ h  a - - h  2 in P]  when the 
exponential form of the characteristic function is used 

Formulae which estimate two-phase seminvariants in 
P1 via their first representations have already been 
given by Giacovazzo (1978). We again use here the 
same mathematical approach but some integrations 
which are not exactly performable are achieved by 
more suitable techniques. We obtain 

e0+ 
P÷ -- , (24) 

P+ + e o  

where 

p o  = exp (-T- B) 

x [exp (+A t + A -+ + -- 1,2 -T- A i-,2,6) 

x cosh (A ~ -- As, 6 -T- A 3,2,5) 

+ e x p ( - - A ~ + A  -+ + + - 1 ,2-  Ar,2,6) 

x cosh(A~ + A5, 6 ¥ + At,2.5) 

+ e x p ( + A ~ ¥ A  -+ + + 1,2 -- Ai-,2,6) 

x cosh(A~ --  A5, 6 + + - At,2,5) 

+ exp (--A~ T- A +- + 1,2 ~ AT, 2,6) 

X cosh(A~ + A5,6 - + A+2,5) ] , 1 ,  
where 

B = (R~ + R~ --  1)R~ R4/N, 

A~=(~q- R3R4)R5/N 1/2, 

A t : ( ~ - F  R3R4) R6/N 1/2, 

A~, 2 = R 1R2(R3 ___ R 4 ) / N  u2, 

A5,6 = R5 R6(R~ + RD/2N, 
A~,2, 5 -- R 1 R2 Rs(R3 _ R4)/N, 
A~.2, 6 = R 1 R2 R6(R 3 _ R4)/N. 

(25) 

In (25) the t e rms  AI,2,6, A5, 6 and AI,2, 5 are  of order 
1/N. If they are neglected in comparison with A 6, A 1,2 
and A 5, (25) reduces to 

po+ = exp (¥B)  cosh A~ cosh A~ cosh A~, 2 (26) 

which proved to be a useful approximation of (25). If 
we denote by P+(IR i, R j,  ...) the marginal conditional 
sign probabilities for E3E 4 given R i, R j, ..., we obtain 
from (26) 

P+(IR1 ,R2 ,Ra ,R4)~_exp{ -T- (R  2 + R E) 

× R 3 R4/2N} cosh A ± 1,2~ 

which coincides with (4.10) of Green & Hauptman 
(1976) or with (11.20) when (II.20) is calculated in P1. 
See § 5 for further marginal sign probabilities. 

5. The estimation of two-phase semlnvariants of first 
rank in centrosymmetric space groups when the 
exponential form of the characteristic function is used 

By using the same notation as in §3 we obtain, for the 
conditions under which (21) holds, 

P °  (IR 1, R z, R3, R4, Rs, R6, R7, R8) 

-" exp (-T-BAp, q) cosh A[  cosh A t cosh A -+1,2 

x coshA~, 7 coshA + ~',s, (27) 
where 

R3R4  
B - - - [ 4 ( R  2 + R  2 - 1 ) + R  2+R21 ,  (28) 

2N 1( ) 
A-~ = NV---- 7 + R3R4Ap ,  R 5, (29) 

A~ -- + R 3 R4Ap, R6, (30) NI/2 
1 

A + = (R + R4Ap, q)R Re, (31) 1,2 ~ 3 -- 1 

1 
A + (R + R4Ap, q)R R 7, (32) 1,7-- N1/2 3 -  1 

1 
A +- = (R + R4Ap, q)R2R s. (33) 2,8 ~ 3-- 

The marginal sign probabilities can be readily derived 
by integrating P ( E  3, E 4, R 1, R E, R 5, R 6, R 7, R8) with 
respect to the E f s  whose magnitudes are not measured. 
For  example, 

P° ( IR1,  R E, R3, R4, R6, RT, R8) 

___exp T - ~ ( 3 R  2 + 4 R  2 - 3 + E  2 + E 2 ) A p .  

x cosh A~ cosh A + + A -+ • ]-,2 cosh Ai-,7 cosh 2,8, 

p o  (IR1 ' RE , R3 ' R4 ' R7 ' Rs  ) 

[ R3R4 ] 
___ exp ¥ ~ (3R 2 + 3R 2 -  2 + E 2 + E2)A,,q 

x coshA~ 2 cosh A-- 7 cosh A-- • , 1, 2 , 8 '  

p o  (IR2 ' R3 ' R4 ' R5 ' R6 ' R7 ' R8 ) 

= P°(IR2, R 3, R4, R6, R7, R8) 

~_ exp ¥ ~ (2R 2 -- R 2 + R2)A, ,q  

x cosh A t cosh A~,s; 

po  (I R2, R3, R4, R6, R7) 

( R3R4 ) 
_~ exp -T- 2N t~ 7 Ap, q cosh A~. 
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In Appendix B* the algebraic expression of P8 = P(E,, 
E 2, ..., Es) is given in order to allow the reader to derive 
further marginal sign probabilities. 

If Rp and Rq correspond to symmetry operators of 
order two, (27) becomes 

P°+_(I R 1, R2, R3, R4, R5, R6, RT, Rs) 

_'~ exp (-T- B'Ap. q) cosh A~ + cosh A~ + cosh A +1,2 

x cosh A + cosh A + (34) 1,7 2,8' 

where 

R3R 4 
B t - -  _ _  (4R 2+4R22+2R 2 + 2 R  2 - 6 ) ,  (35) 

2N 

1 ( , ,  ) 
A~- + _ N1/2 ~ + - - +  R 3R4Av,g R s, (36) 

2 -  

A~ +-= - + - -  + R 3 R 4 A i p q  R 6. (37) N 1/2 2 - ' 

The following marginal sign probabilities can find 
frequent application: 

P°_(IR1, R 2, R3, R4, Rs, R6) 

~exp[_T_ (2RZ + 2RZ_ 2) R3R4 ] + 2N Ap.q coshA~ 

x cosh A~ cosh A -+ • 1.2' (38) 

P°(IR1, RE, Ra, R4, Ri) 

exp [_T_ (2R} + R2 1) R3R4 ] ~-- - Ap.q cosh A~. 2 
2N 

× cosh A ~, (3 9) 

ifi = 5, 6, (j, n ) =  (1,2)or (2,1)respectively; 

p0+_ (IRx ' R2 ' R3 ' R4 ) 

[ _'-~ exp -T- (Re + R ~ ) ~  Aipq, c°shz~e,,2, (40) 

which coincides with (II.20); 

e°_+ (I R2, R3, R,, = po R2, R3, R,, Re) 
cosh A~; (41) 

po_+ (I R1, R3, R4, Rs, R6) -- po_+ (IR 1, R3, R4, R5) 

"-~ cosh A -+" (42) 
- -  5 '  

po+ (iRi ' R3 ' R4 ' R j) ~-- exp( + e l - -  
R3R4 ) 

Alp q 
2N ' 

for (i,j) = (1,6) and (2,5); (43) 

* Appendix B has been deposited. See previous footnote. 

P°+_ (IRi, R3, R4) 

( R3R4 ) "-' ~ Ap q for i = 1,2 (44) _ exp + ei 2N ' 

po___ (IR3 ' R4 ' R5 ' Re ) _~ 0.5. (45) 

It should be noted that equations (38)-(45) hold both 
when Rp and Rq do and do not represent symmetry 
operators of order two. Furthermore, equations (38)- 
(45) constitute the complete set of marginal sign 
probabilities for the case when Rp = --Rq. The 
generalization of (27) and (34) to cases in which more 
(Rp, Rq) pairs exist, which gives rise to the crystallo- 
graphically independent generalized solution (hl, h z) 
of system (5), is not a trivial task. It may be expected 
that formulae such as 

P°+ ~--exp ( ¥ ~ ' -  o,.q) ~'j B~'Aj, p,q)I-I', cosh A ' ' + J  ._j,~,q (46) 

can be useful approximations of the 'true' sign 
probability, provided B~' and A~',p,q a r e  suitably chosen. 
A general approach for obtaining such approximations 
will be given elsewhere (Giacovazzo, 1979b). 

6. The estimation of  two-phase seminvariants of  first 
rank in noncentrosymmetric space groups when the 
Gram-Charlier expansion of  the characteristic function 

is used 

Let cp = ~0u + ¢P, be our seminvariant. After some 
calculations we obtain 

P(OIR1, R2, ..., R8) 

~_ [2z~I0(G)] -1 exp {G c o s ( O -  An.q)}, (47) 

which is a Von Mises distribution, where 

R3R4(  A ) 
G - - -  

N 1 + - C / N  ' 

C= + ¼L4(EI)t~ 5 + ¼L4(E2)8 6 + (Ele 2 -~- el• 7 Jr- e288) 

X (~3 -t- ~4) -t- ~3 E4(~5 -t" C6) , 

L4(Ei) = E ~  - 4E~ + 2, 

Ap, q = 27r(h 1 Tp -- h 2 Tq). 

A is the same quantity as occurs in (21). Useful 
expectation values are 

II(G) 
(cos ~P) ~_ cos Ap.q I°(G ) , (48) 

I,(G) 
(sin q)) ~ sin Ap.q Io(G) (49) 
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, . 1  [1 / , (G)  ] 
vat [cos to] _ ~ + cos 2A v q 

2 GIo(G) 

I 12(G) 1 I](G) 
- -  cos 2Av, ~ (50) 

2 I2(G) 2 I2(G) 

1 [1 /I(G) ] 
var[sin to] ~_ ~ - -  2 G / - /~ )  J cos 2Av, q 

1 12(G) I 12(G) 
- -  + - ~ COS 2Ap, cr (51) 

2 12(G) 2 12(G) 

We emphasize that the variance of cos tO is not always 
smaller than that of sin to [i.e. if hit v -- h2Tq = 
(2n + 1)/4]. Furthermore, the variance of to depends on 
I G I alone: 

oo 
7r2 E I2n(IGI) 

var  [ to] "-'_ --~-- + [Io(I G I)1-1 n2 
n=l  
oo 

(52) ~ 4 [ I 0 ( I a l ) ]  - 1  
n=0 

If R v and Rq correspond to symmetry operators of 
order two, (47)--(52) still hold provided G'  replaces G, 
where 

RsR 4 A' 
G' = -  A' = A  + e5e 8 + ~6~7, 

N 1 + C ' /N '  

C '  = C + ¼L4(E8)85 + ¼L4(ET)86. 

Marginal distributions are obtained from (48) and (49) 
in the same way as from (21) in centrosymmetric space 
groups. If more (R v, Rq) pairs exist, which give rise to 
the crystallographically independent generalized 
solution (hi, h2) of system (5), we obtain 

e ( t o t . . . ) ~  [2~zI0(Q)] -1 exp[Q c o s ( t o - 0 ) ] ,  (53) 

where 

O = y '  Z '  GTcos ,4j.p,q 
(p,q) J 

( 2 ] 1/2, 
+.  Z' Z'  GJ' sin Aj,v, q (54) 

\co, q) j 
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The vanance of to is given by (52) if Q replaces I GI. 
Useful expectation values are: 

I,(Q) 
(cos to) = ~ c o s  0, (56) 

Io(Q) 

II(Q) 
(sin to ) _ - -  sin 0, (57) 

Io(O) 

( 1 + c o s 2 0 ) [  IlZ(Q) ] 
var [cos to] _ 1 

2 I~(Q) 

I I ( Q )  
- -  cos 20, (58) 
QIo(Q) (1-cos20)[ 

var [sin to] ~_ 1 
2 

] I2(Q) 

I,(Q) 
+ ~ cos 20. (59) 

QIo(Q) 

If Q is large enough, the expected values of cos to and 
sin to are very close to cos 0 and sin 0 respectively. As, 
in these conditions, small variance values occur, 0 
should be a reliable estimate of to. 

7. The estimation of two-phase seminvariants of first 
rank in noncentrosymmetric space groups when the 

exponential form of the characteristic function is used 

Provided R v and Rq do not correspond to symmetry 
operators of order two we obtain for to = tp3 + tp4, 

P( to l  R 1, g 2, R3, R4, Rs, R6, RT, R8) 

1 
~_ M exp {--2B cos (to --  Ap, q)} 

L 

X Io (Z5) Io (Z6) Io (Z l , 2 ) Io (Z l , 7 ) Io (Z2 ,8 ) ,  

where 

2 
2 2 Z 5 = ~ R I!e 2 + R 3 R 4 NI/2 5 t4 l 

(60) 

Z ' E '  o:' sin Aj, p,q 
(p,q) J 

tan 0 = (55) 

Z' Y/G ' cos Aj, p,q 
(P,q) J 

The meanings of the symbols are analogous to those in 
(22). (53) is a unimodal distribution which has its maxi- 
mum at to --- 0, and the larger the value of Q, the higher 
this maximum will be. For up to orthorhombic space 
groups this is always 0 = 0, zr. 

+ t~2RaR 4 C O S ( t o - - A  ~l I/2 ~p, qlJ 

Z6 ~ R 6 1 1  2 = ~e 2 + R 2 R 2 
N1/2 

Z l ,  2 - -  

+ e2RaR4cos(to--A )l 1/2 19, q J-= 

2 
N1/2 R1R2[R32 + R l 

+ 2R 3 R 4 cos ( to--  A )l 1/2 p,q/J ' 

(61) 

(62) 

(63) 
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2 
Z1,7-- N1/2 - ~  RI RT[R 2 + R 2 

+ 2R 3R 4cos (c I ) -A  ~11/z ~ p ,  q l J  , 

2 
Z2, 8 -- NI/2 _ ~ R  2RS[R3 2 + R 4  2 

(64) 

P(OI R 1' R2, R3, R4' Rs'  R6) 

[ 1 R3 R4 
/ - (2R,  ~ + 2R~ 2/ ,--, ~ exp 

L [ N 

x Io(Zs) Io(Z6) lo(21.2); 

] 
( ~ -- Ap,q)] cos 

(68) 

+ 2R 3 R 4 COS ( ~  -- Ap, q)] 1/2, (65) P(~IR1, Rz, R3, R4, Ri) 

L = 2 7 r  
+ o o  

Z 
m, n,  l~,/~, O 

nm+.+,,+.+oj" r . (2B), 
- -  x ]  a m n v ~ o . , , . m + n + v + ~ . t .  O 

(66) 

~_-~-exp (2R 2 + R  2 - 1 )  R3 R4 cos (~  - Ap.q) 

X Io(Z,,2) Io(Zi) , 

-N-i~ Im~ -N-i~ )I ,  N v2 if i= 5,6, then (Zn) = (1,2) or (2,1) respectively; 

i  2RIR4R )I (2R,R2R3 X . \  -N-i- ~ NUZ ) 

( 2 R I R 2 R 4 ] _  [e2R6~ / 2 R 3 R 4 R 6 )  

X1 ° ( e l R ' ] I  {2RaR4R')  
\ N x/2 ] o k N1/2 

I is the modified Bessel function of order v and B is 
fixed by (28). 

The conditional expected value of cos • is found 
fi'om (60): 

a 
<cos (~IR 1, R2, R3, R 4, R 5, R 6, R 7, R 8) > ~-- cos dp,qt ~ , 

(67) 

a = 
+01D 

Y 
m ,  n ,  v ,  I~, O 

- -  o0  

(-- 1)m+n+~'+u+e+ alm,vuo 

X lm+.+,,+.+o+l (2B), 

(-- 1)m+n+v+u+° Imnv.elm+n+~,+.+e (2B). 

where 

b =  
+ o o  

Z 
/71, n ,p , / . t ,  Q 

- - 0 0  

It should be noted that in (60) L is a normalizing 
parameter which does not depend on ~. Although an 
explicit expression for L is given, the conditional 
expected value of cos • is more readily obtained by 
first calculating the distribution (60) and then comput- 
ing numerically the value of L. The mode of the 
distribution may be calculated in the same way. 

Marginal probability values for • are readily ob- 
tained by integrating (60) with respect to non-measured 
reflexions: 

(69) 

P(OI R 1, R2, R3, R4) 

1 [ R3R4 ] 
~_--exp  --(R 2 + R~) cos(~--Ap,  q) 

L N 

x 10(Z1,2) , (70) 

which coincides with (111.31); 

P(lib I R 2, R 3, R4, Rs, R6) = P(~IR2, R 3, R4, R6) 

1 
- -  Io(Z6); (71) 
L 

P(~IRt ,  R 3, R4, Rs, R6) = P(~bIR 1, R 3, R4, Rs) 

1 
= -  Io(Zs); (72) 

L 

P( @IR i, R3, R4, Rj) 

"~ COS ( ~ - -  Ap,q) (73) _ exp --~i N 

for (i,j) = (1,6) and (2,5); 

p( c191Ri, R 3, R 4) 

~_ exp - ~ i - -  cos ( ~ -  Ao, q) for i = 1,2; (74) 
N 

P(~LR3, R4, R .  Re) ~- 1/2n. (75) 

In each of (68)-(75) L is a normalizing factor whose 
formal expression can be readily derived from the 
general expression (66). 

(60) may be a rough approximation of the 'true' dis- 
tribution when some of the eight terms of the dis- 
tribution are centrosymmetric reflexions. For example, 
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if Rp and Rq correspond to symmetry operators of 
order two, E 5 and E 6 a r e  centrosymmetric reflexions. In 
fact, if R m is a rotation matrix for which Rp R m = Rq 
(then Rq R,n = Rp also), we have 

h ( R p -  Ro)R m = h(R ° -- Ru ) = - - h ( R p - -  Rq), 

which in terms of phases gives, because of (4), 

~h(Rp-Rq)Rm = ~ h ( R p - R q ) -  27rh(Rp- Rq)T m - -  --~h(Rp-Rq)" 

1,76) 

From (76), 

qTh(R _R~ ) -- 7[h(Rp- Rq)T m 

is easily obtained, and gives the restricted phase values 
for tPh(sp-aq). If E 5 and E 6 are centrosymmetric 
reflexions, (60) no longer holds; in fact, the modified 
Bessel function of zero order involving Z 5 and Z 6 has to 
be replaced by hyperbolic cosines of suitable argu- 
ments and a suitable B' value has to replace B. 
Furthermore, the problem of generalizing (60)to cases 
in which more (Rp, Rq) pairs exist, which give rise to 
the crystallographically independent generalized 
solutions (h~, h2) of system (5), needs to be solved. All 
these theoretical aspects are discussed elsewhere 
(Giacovazzo, 1979b) where a general distribution 
function is given, which in several cases can be con- 
sidered a useful approximation of the 'true' distribution 
of O. 

8. Concluding remarks 

A theory has been described which is capable of 
deriving for any space group the value of a two-phase 
seminvariant of first rank, • = tp= + ~0v, given all or 
some of the magnitudes belonging to the first phasing 
shell of O. The probabilistic formulae are derived both 
by using the exponential forms of the characteristic 
functions of the joint probability distributions studied 
and via their Gram-Charlier expansion. A general 
algebra for two-phase seminvariants of first rank has 
been developed which makes their estimation easier in 
the automatic procedures for phase solution. 
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Abstract 

With the space-filling elongated dodecahedron or its 
truncated form as a coordination polyhedron for larger 
atoms, structures like BaAI4, CeMg2Si2, BaHgl~ and 
ThMnl2 can be accurately described. 

Introduction 

When an alloy contains atoms of very different sizes, it 
is often useful to describe the structure by a polyhedron 

0567-7394/79/020305-04501.00 

of the smaller atoms coordinating the larger atom. An 
example of this is NaZn13 (Shoemaker, Marsh, Ewing 
& Pauling, 1952). Zn atoms are at the corners of a 
regular snub cube which is centred by a Na atom, and 
such snub cubes form the structure by sharing square 
faces. When dissecting various alloy structures we 
came across some that could be described by the so- 
called elongated dodecahedron, one of Federov's five 
space-filling polyhedra. 

The elongated dodecahedron is a polyhedron with 18 
corners. It is obtained if the rhombic dodecahedron is 
elongated along one of its fourfold axes (Fig. 1). The 
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